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This repor t  i s  concerned with t h e  problem of determining 

the hidden l i n e s  sf con!pul;er-dral.m, convex pclyhedra. This i s  t h e  

so-cal led "hidden- l i n e  problem, " l imi ted  here t o  convex polyhedra. 

The so lu t ion  presented should be considered as a s t e p  toward the  

eventual so lu t ion  of the  more general  problem of  non-convex poly- 

hedra. Results based on ac tua l  computer tests are included. 

. 
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LIST OF SYMBOLS 

S Any convex polyhedral surface 

Vertex number i 

Face number m 

Edge between vertex V and ver tex V 

Vantage point 
i j 

Total number o f  ve r t i ce s  

N Total  number o f  faces 

L Total  number o f  edges 

71 Picture  plane J 
Original  rectangular system of coordinates 

System (0,xyz) t r ans l a t ed  t o  E 

System of coordinates i n  71 

U 

wi Vertex number i i n  t he  p ic ture  plane 

Direction cosines 

Distance from E t o  Tf 

Direction vector when E is at i n f i n i t y  

Vector normal t o  t he  face containing V V V 

Triple  product 

iy j’ k i jk n 

jk 
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DETERMINATION OF HIDDEN Z E E S  I N  POLYEiEDRAL 
FIGUilES: COlwEX CASE 

I. INTRODUCTION 

With t h e  recent in"Lerest i n  applying d i g i t a l  computers t o  the  

so lu t ion  of graphical  problems, a new problem has appeared and received 

t h e  name of "hidden-line problem." In  everyday l i f e ,  t he  f a c t  t h a t  

lidit can not pass through opaque matter solves t:ie hidden-line problem 

immediately: t h e  back l i n e s  of opaque objec ts  a r e  hidden. I n  the  case 

of a computer representat ion o f  the same object,  however, there  i s  no 

opaque matter t o  s top  the  l igh t .  The question as to which l i n e  should 

be Seen and tJfitch should be hidden must be answered mathematically, 

date,  no p r a c t i c a l  so ld t ion  t o  t h i s  problem i n  i t s  general  form has been 

found. 

To 

This  repor t  proposes a solut ion t o  the  hidden-line problem i n  

tha r e s t r i c t e d  case of convex polyhedra. For t h i s  case, d i f f e ren t  soh- 

t ioi ls  hotrever, it is believed t h a t  t h e  aTproach taken i n  t h i s  

repor t  w i l l  lend i t se l f  t o  a general izat ion t o  t h e  non-convex case. 

Given a mathematical descr ip t ion  of t he  polyhedron and a vantage point, 

t h e  algorithm t o  be described allows a computer (1) t o  determine which 

edges c m  be seen and which are hidden, and ( 2 )  t o  ca lcu la te  a pro jec t ive  

view of t h e  object  as seen by an observer located at  the  varitage point. 
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A convenient way of describing a polyhedron i s  i n  terms of i t s  

ve r t i ce s  and faces: 

1) Vertices 

i s  attached t o  each vertex, e. g., V. (See 
1 

A subscr ipt  'i 

Fig. 1). Although 'i' may be chosen arbitrari l j ,  for con- 

venience of notations it i s  assumed t h a t  i = 1,2,. . . ,M, where 

M i s  t h e  t o t a l  number of ver t ices .  

by three  coordinates: 

Each ver tex Vi i s  given 

Vi(xi,yi,zi) with respect t o  a three-  

dimensional system o f  axes (See Section I V ) .  

2 )  Faces 

7 Each face of  EL polyhedron i s  a polygon . A f ixed d i rec t ion  

of t rave l  is  chosen on t h i s  polygon. S t a r t i n g  from any ver- 

tex, and t r ave l ing  around back t o  the  o r i g i n a l  vertex, a 

l i s t i n g  of the  ver t ices  successively encountered uniquely 

describes the  polygon. For instance, F = p,k,i, j , t , p  de- 

notes t h e  face whose successive ve r t i ce s  are V 

The index 'm' varies from 1 t o  N, where N i s  the  t o t a l  number 

m 

V , V . , V  Vt. p' k 1 j' 

of faces (See me;. 1). 

* "A polyhedron i s  a f i n i t e  set of polygons arranged i n  space i n  
such a way t h a t  every s ide  of each polygon belongs t o  j u s t  one 
o ther  polygon, with the  r e s t r i c t i o n  t h a t  no subset has the same 
property". 5 
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Since a convex polyhedron is  a two-sided surface,  it i s  pos- 

Using t h i s  property, t h e  2 s i b l e  t o  define an "inside" and 'loutside". 

d i r ec t ion  of t r a v e l  around t h e  faces i s  chosen such t h a t  each face i s  

described i n  a clockwise d i rec t ion  fo r  an observer outs ide t h e  poly- 

hedron. With the  knowledge of both ver tex and face data, it i s  now 

possible  t o  determine the  edges. From the  d e f i n i t i o n  of a polyhedron, 

an  edge i s  defined as the  in te rsec t ion  of  two faces.  The necessary 

and s u f f i c i e n t  condition f o r  the edge V.V t o  ex i s t  is, therefore ,  t h a t  

i and j be adjacent subscr ipts  i n  t h e  s t r i n g  def ining a face. 
l j  

Once i 

and j are found, say i n  F = p, k, i, j, t, p, there  must be one and only 

one o ther  face such t h a t  F = a,q,r, j,i,a. 

m 

n 
I n  t h e  computer representat ion every edge V . V .  of t he  poly- 

1 J  

hedron i s  character ized by a block of four adjacent c e l l s  i n  an array,  

containing respec t ive ly  : 

2) Vertex number: j 

3) Face number: m 

4) Face number: n 

Evefitually, a fifth c e l l  i s  added t o  each block. This c e l l  contains 

t h e  code Tor  v i s i b i l i t y  or i n v i s i b i l i t y  of t he  edge. The t o t a l  num- 

ber  of edges i s  denoted by L. Since t h e  polyhedron i s  convex, there 

e x i s t s  a f ixed  r e l a t ionsh ip  between the  number of ver t ices ,  edges 
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and faces. This r e l a t i o n  i s  known as Euler’s equal i ty  and i s  wr i t t en  

as: (See Fig. 1) 

M - L + N = 2  

Upon i?etermination o f  L, a t e s t  i s  performed t o  check whether L satis- 

f i e s  Euler ’s  equality.  If it does not, an e r r o r  is  indicated.  

c 
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111. PROPERTIES OF CONVEX POLkTIEDlrlA 

"he v i s i b i l i t y  t e s t  t o  be Cescribed i n  Section V I  i s  based on 

the  following property: 

To an external  observer, t he  faces of a convex 

golyhedron are  e i the r  completely v i s ib l e  or 

corn l e t  e lv inv is ib le  . 
To demonstrate t h i s  property, it i s  f i rs t  assumed t h a t  a p a r t i a l l y  v i s ib l e  

face, F, ex i s t s  and it i s  then shown tha t  t h i s  yields  a contradiction. 

F i r s t ,  two points, P end Q, are chosen on tile face F such that :  1) P 

i s  vis ible ,  Q i s  invis ible;  and 2 )  Q i s  not located on an edge and P 

i s  co t  on the  boundary between the  v i s i b l e  and inv is ib le  regions (See 

Fig. 2;. Since the  polyhedron is  convex, +;he liEe EQ in t e r sec t s  the  

surface S of the polyhedron i n  two points and two points only: Q and Q'. 

It is  understood t h a t  these two points a re  each on a face o f  the  polyhe- 

dron. Since 4 i s  invis ible ,  Q' must l i e  between E and 4. Consider now 

Q1 between I$ and 4'. 

Hence, it follows t h a t  a l l  points of  Pdl arc insiiie S. Since P is  not 

on a vis ible- invis ible  boundary (condition 2 ) ,  there i s  a point PI on PQ 

such t h a t  P, is  vis ible .  Also since S is  a cl.osed surface ana P, is 

v is ib le ,  a l l  points of EPl are outs ide  S. This wouid include the  in t e r -  

sect ion R of EPl with PQl. 

R i s  on PQt, it i s  inside S. 

cluded t h a t  no face of a convex polyhedron can be p a r t i a l l y  v is ib le .  

Q1 i s  insice S by def in i t ion  02 the  convexity. 

But i'i has already been establ ished t h a t  i f  

Since t h i s  i s  a contradiction, it i s  con- 
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. 
It should be noted t h a t  t h i s  proof is  va l id  fo r  the  isometric 

case as w e l l  (vantage point at i n f i n i t e  dls tance) .  

An immediate consequence of t he  above property i s  t h a t  no 

edge of a convex polyhedron can be p a r t i a l l y  v is ib le :  

v i s i b l e  o r  inv is ib le .  

it is  e i t h e r  
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IV. SYSTE2G OF COORDITJATES 

Three rectangular  systems of coordinates are used: (0 ,  q z ) ,  

(E,XYZ), and (0 ,x 'y ' )  (See Fig. 3). 

A. E a t  a F i n i t e  Distance 

1) System (0,xyz) 

!This is  a fixed system o f  axes with o r l g l r ,  at 0. The 

coordinates of the ve r t i ce s  V.(x y z . )  a i d  t h o s , ~  of 

the  vantage polnt  E(x ,yo,z ) are given i n  t h i s  system. 

1 i' i' 1 

0 0 

2)  System (E,XYZ) 

This variable system of coordinates i s  simply t h e  system 

( 0 , x j z )  t r ans l a t ed  t o  the  vaiitage point. The transforma- 

t i o n  i s  expressed by: 

X Z X - X  

Y = y -  

z = z - z  

0 

YO 

0 

The t e s t  fo r  face v i s i b i l i t y  i s  Terf'ormed i n  t h i s  basts. 

3 )  Systern ( O , X ' ~ ' >  

This two-dimensional basis represents  t h e  p i c tu re  plarie, 

i.e. t he  plane of the a c t u a l  drawing. This p i c tu re  plane 

i s  chosen pe rFnd icu la r  t o  the  d i r ec t ion  OE, through t h e  

o r i g i n  0. To preserve the sensation of vertical. and 
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v3 - 

. 

x. 4- Y v 2 - [ y i + y 0 -  1 0 

2. 4- zo 
1 - 

hor i zon ta l  for an observer located zt  the  vmtage point,  

t he  axis Ox' is  chosen t o  l i e  i n  t h e  :c,.-plane. The only 

exception is  when E i s  located on the  z-axis, i n  which 

case t h e  p i c tu re  plane simply becomes the  o r i g i n a l  xy- 

plane. 

A t  t h i s  point,  a perspective drawing is  defined as -the s e t  of 

points  $1, forrr2d by vectors  v from E t o  poin ts  o f  S p ie rc ing  the  p i c tu re  

plane. ++ 

vector  w i s  wr i t t en  as (See Fig. 4). 

If u i s  a u n i t  vec tor  from E, normal t o  the  p i c tu re  >lane, a 

D w = v- u. v 
C 

Once a l l  Wi(Xi,Yi,Zi) a r e  computed, it i s  des i red  t o  f i n d  t h e i r  two- 

dimensional coordinates W.(x' y!) i n  t h e  p i c tu re  plane fl. 
1 i' 1 

form, t h e  transformation can be wr i t ten  as: 

I n  i t s  general  

where Ai,p.,v 

t h e  following r e l a t i o n s  are applicable:  

are the  d i r ec t ion  cosines of t h e  new basis.  I n  addition, i i  

4 * Xotation: Lower case l e t t e r  denote vectors,  e. g. : Et! = w 
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Since ’il vas chosen t o  be perpendicular t o  OE, it follows t h a t :  

X 
0 A, = 7 YO 

cl3 = -jj- 
Z 

0 v3 = - D 

d =  
0 0 

Since Ox’ l i e s  i n  t he  xy plane, 

VI = 0 

After solving for  A,, , A p ,  p2 , v2 , t he  matrix of the transformation is: 

except for  the case: x = 0, yo = 0, for trhich 
0 

i l x i  = 
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B. E at 8 I n f i n i t y  

1) System (0,xyz) 

This i s  the  same system as above (A. 1). Tne d i r ec t ion  

o f  t h e  vantage point  i s  given by a vec tor  vo( xo,yo, zo) . 
Z )  System (0 ,x 'y ' )  

I n  cont ras t  t o  the  case of t he  vantage point  at  a 

f i n i t e  distance,  i n  t h i s  case t h e  Wi can not be com- 

puted using w = - because of the  i n f i n i t e  values o f  

D, w, v. I n  general, the  condition: 

u. v 

z '  = 0 i 

w i l l  not be sa t i s f i ed .  

S i n  3 t he  i n t e r e s t  i s  i n  an isometric drawing o f  t h -  ob jec t  as seen 

from a d i r e c t i o n  perpendicular t o  the  F ic tu re  plane, t h e  values of z; 

are i r r e l evan t  t o  t h e  problem. Consequently, the  same matrix w i l l  be 

used for  t h e  coordinate transformation. 

X 
0 - 
d 

yozo - -  
dD 

0 

xz + yo 
0 

dD 
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V. DETZRKTNATION OF HIDDEN FACZS 

A. Vantage Point  at I n f i n i t y  

The pos i t ion  of t h e  vantage point  E at  i n f i n i t y  is  given by 

t h e  d i r ec t ion  vector  v . Since a t n i c a l  face F = i, j , k , t , p , i  i s  
0 n 

uniquely defined by three  ver t ices  only, the notat ion F w i l l  be used i z k  

f o r  t h i s  face. 

face i s  needed (See Fig. 5). 

To t e s t  t he  v i s i b i l i t y  of FTjk, a normal vector  t o  t h i s  

The vector  is  chosen pos i t i ve ly  or iented 

toward t h e  ins ide  of  t h e  polyhedron and denoted: n Then a vector  i jk' 

u i  i s  defir,ed such t h a t :  

EV and 2 )  u .  is  pos i t i ve ly  or iented from E t o  V Since E is  at in- 

f i n i t y ,  a l l  vectors  u a re  one and t h e  same: 

1) u .  i s  a f i n i t e  length vector  supported by 
d J 

3' J j '  

j 

u = - v  
j 0 

To check whether F i s  facing o r  looking away from the  vantage point,  

t he  following dot product i s  computed (See Figure 5): 

i j k  

- = u . n  - - v . n  ai j k  j i j k  o i j k  

According t o  the  s ign  of A it i s  concluded t h a t :  
i j k  

Aijk > 0 V i s  i b le  Fi j k  

Inv i s ib l e  Fi jk 

The information containeZ i n  the input data  can now be f u l l y  ex;?loited 

. F i r s t  t h e  inward normal vector  n i s  t o  determine nijk and Aijk i j k  
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wri t t en  as t h e  cross product 

n = (vk-vj)x(vi-".) = v x-br i j k  J k j  i j  

Then Aijk can be expressed as the t r i p l e  product 

ai j k  = n  i j k  - u j = - (Vkj,Vij,V0) 

srhich c8n be wr i t ten  i n  the  

- - 
'i j k  

form 

x -x - X  xk-x j i j  0 

Yk--Yj Yi-Yj -YO 

'k-'j i j  0 
z -2 - Z  

It can be seen t h a t  the tes t  f o r  face v i s i b i l i t y  reduces simply t o  the 

evaluation of a three- by-three determinant. 

B. - Van+se Point at a F in i t e  .- - -. Distance 

A grea te r  symmetry i s  achieved i n  A when E i s  a t  a f i n i t e  C i s -  

Under t h i s  consi- 

i j k  

tance and E i s  chosen as the  or igin of new coordinates. 
+ 

t ion ,  v = EV. s a t i s f i e s  the  requirements on u and one may take u = v 

(See Fig. 6). The expression f o r  A becomes: 
j J j j j  

i j k  
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j o  $0 

Yio y j o  'ko 

X X i o  

. 

since xFj x v. .v = 0. By rearranging: i i  

and t h i s  can be wri t ten as: 

= x  - x  i 3 I xiO - I yiO - yi - yo 
with 

= z  - 2  I 'io i 0 

9. - DeterrLnation of Hidden Edges 

Once each 05' the N faces has been c l a s s i f i ed  e i ther  as v i s ib l e  

o r  invis ible ,  a t ten t ion  can be focussed on the edges. An edge V . V .  ap- 
1 J  

pears i n  two faces, Fijk and Ftji. Since the  polyhedron is convex, it 

i s  su f f i c i en t  f o r  V.V. t o  be v is ib le  that either of these faces be 

visible. Conversely, a necessary and su f f i c i en t  condition f o r  V.V. t o  

be inv is ib le  is t h a t  both these faces be invis ible .  These r e su l t s  are 

1 J  

1 J  

summarized i n  the following table: 

V i s i b l e  *t j i  
Visible Fi jk 

V i s i b l e  V.V Vi s ib l e  
Ft j i  1 3  

Invi  s i ble *i j k  

Invis ib le  V.V Visible 

Invis ib le  ViVj Invis ible  

Ft j i  l j  
V i s  i ble 

Invi  s i b l e  

Fi jk 

i j k  F Ft j i  

A formal notetion f o r  edge v i s i b i l i t y  is:* 

* ' V '  denotes the  log ica l  'OR' 
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V.V Visible = 1 3  

Once t h e  v i s i b i l i t y  

mined, it is  a simple mtter 

o r  l n v i s i b i l i t y  o f  each edge has been deter-  

fo r  a computer program t o  p l o t  t h e  perspec- 

t i v e  pro jec t ion  of t h e  object,  using s o l i d  l i n e s  f o r  v i s i b l e  eQes and 

dashed l i n e s  f o r  i nv i s ib l e  edges. a 

A FORTRAN program f o r  the foregoing algorithm was wri t t en  and 

tes ted .  Some of t h e  r e s u l t s  obtained are shown i n  Figs. 7,8,9, and 

19. The i l h s t r a t i o n s  are reproductions of the  a c t u a l  compte r  output 

as p l o t t e d  on a CALCOMP p lo t t e r .  
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VI.  CONCLUSION 

The main o5ject ive i n  developing t h e  foregoing algorithm w a s  

t o  lay a foundation for an algorithm t h a t  would hold a l s o  f o r  the  case 

of non-convex polyhedra. A t  t h i s  stage of  t h e  work, it is too  e a r l y  t o  

t e l l  whether t h i s  object ive has been achieved. However, t he  s impl ic i ty  

o f  t he  algorithm f o r  handling convex polyhedra i s  considered encouraging 

for  meeting t h e  ul t imate  objective.  Even i n  i t s  limited present form, 

the algorithm should be o f  i n t e r e s t  t o  persons ac t ive  i n  t h e  com2uter 

graphics field. 
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M - L + N  = 6 - 1 0 + 6 = 2  

v. 
I 

M = 6 VERTICES 

N = 6 FACES 

L = I O  EGGES 
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